If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20r^2-64r+35=0
a = 20; b = -64; c = +35;
Δ = b2-4ac
Δ = -642-4·20·35
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-36}{2*20}=\frac{28}{40} =7/10 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+36}{2*20}=\frac{100}{40} =2+1/2 $
| 1/3x-1/x=4 | | x^2+2x=1.08 | | 1/1+x=2/3 | | 24x^-10x=0 | | 15x+45=-90 | | 2+5(m-1)=47 | | -98=-9(6m-3) | | 21=2y-1 | | w-21/2=71/2 | | 196=-7(4r-8) | | (2r-5)(10r-7)=0 | | 196=-7(4r-80) | | 196=-7(4r-80 | | 5y-3=10-4y | | 13-3y=-8 | | 10^u=10,000 | | -3(-4x+7)=-93 | | 6-3y=3(-y+2) | | 69x=6 | | -0.2k+1.4=0.8k | | -24=6n+5-2n | | 1=2x(x^2+1) | | p/3=40 | | 2x²+2x+1=0 | | 2(x-3)-(1-x)=5 | | 0×f=0 | | y+7=-30 | | 3(2n-1)-2n=-3 | | 5x-9+2x-10=78 | | 7t+15-3t=25 | | 6-2p=3p+8 | | 2x+3=6–(2x–3) |